
Sequoia User Guide
Reconstruction of multi-generational pedigrees from SNP data

Jisca Huisman (jisca.huisman @ gmail.com)

15 March 2023

Contents
1 Quick-start examples 3

1.1 Simulated Data . 3
1.2 Real Data . 3

2 Background 4

3 Key Points 5
3.1 Mendelian Errors . 5
3.2 Likelihoods . 5
3.3 Genotyping errors . 6
3.4 Birth years & Ageprior . 9
3.5 Parent LLR . 10
3.6 Confidence . 10
3.7 Low assignment rate . 11

4 Function overview 13
4.1 Input . 13
4.2 Simulate . 13
4.3 Ageprior . 13
4.4 Pedigree reconstruction . 14
4.5 Pedigree check . 14
4.6 Pairwise relationships . 14
4.7 Miscellaneous . 15

5 sequoia() input 15
5.1 Genotypes . 15
5.2 Birth years & sex . 17
5.3 Tfilter & Tassign . 19
5.4 Complex . 20
5.5 Herm . 21
5.6 UseAge . 21
5.7 SeqList . 22

6 Running sequoia() 22
6.1 Module (MaxSibIter) . 22
6.2 Input check . 23
6.3 Check for duplicates . 23
6.4 Parentage assignment . 24
6.5 AgePrior . 24

1

6.6 Full reconstruction . 24
6.7 Save output . 25

7 Output check 26
7.1 Pedigree stats & plots . 26
7.2 Compare pedigrees . 28
7.3 Relatedness . 32
7.4 Cluster families . 34

8 Hermaphrodites 35
8.1 Herm ‘A’: Pedigree prior . 35
8.2 Herm ‘B’: Ignore sex role . 35
8.3 Hermaphrodite dummies . 35
8.4 Assignment errors . 36

9 FAQ 36
9.1 Error about/due to input data . 36
9.2 Low assignment rate . 36
9.3 Death year . 38
9.4 Accuracy . 38
9.5 Add new individuals . 38
9.6 Results differ from COLONY . 39

References 39

2

1 Quick-start examples
1.1 Simulated Data
An example pedigree and associated life history data are provided with the package, which can be used to
try out some of the functions. This fictional pedigree consists of 5 generations with interconnected half-sib
clusters (Pedigree II in Huisman (2017)).
install.packages("sequoia") # only required first time
library(sequoia) # load the package
#
get the example pedigree and life history data
data(Ped_HSg5, LH_HSg5, package="sequoia")
tail(Ped_HSg5) # have a look at the data
#
simulate genotype data for 200 SNPs; 40% parents non-genotyped
Geno <- SimGeno(Ped = Ped_HSg5, nSnp = 200, SnpError=0.001, ParMis=0.4)
#
run sequoia; duplicate check & parentage assignment only at first
ParOUT <- sequoia(GenoM = Geno,

LifeHistData = LH_HSg5,
Module = "par")

names(ParOUT) # output: a list with the following elements
[1] "Specs" "AgePriors" "LifeHist" "PedigreePar" "MaybeParent"
"TotLikParents"
#
run sibship clustering & grandparent assignment
optional: use parents assigned above (in 'ParOUT$PedigreePar')
SeqOUT <- sequoia(GenoM = Geno,

SeqList = ParOUT,
Module = "ped")

#
compare the assigned real and dummy parents to the true pedigree
chk <- PedCompare(Ped1 = Ped_HSg5, Ped2 = SeqOUT$Pedigree)
chk$Counts["TT",,]
#
save results: single compressed .RData file, and/or folder with text files
save(SeqOUT, Geno, OtherStuff, file="Sequoia_output_date.RData")
writeSeq(SeqList = SeqOUT, GenoM = Geno, folder = "Sequoia-OUT")

For a detailed walk-through of this example, see here

1.2 Real Data
First get a subset of SNPs which are as informative (high MAF, high call rate), reliable (low error rate),
and independent (low LD) as possible. Ideally around 400 – 700 for full pedigree reconstruction; fewer are
necessary for only parentage assignment, while more may be necessary with very high levels of polygamy or
inbreeding. In addition you need a dataframe with the sex and birth/hatching year of as many individuals as
possible, in arbitrary order.

It is often prudent to first do a quick partial run to check for duplicates and genetic mismatches between
known parent-offspring pairs, before running full pedigree reconstruction.
read in genotype data if already coded as 0/1/2, with missing=-9:
Geno <- as.matrix(read.csv("mydata.csv", header=FALSE, row.names=1))

3

https://CRAN.R-project.org/package=sequoia/vignettes/quick_start_example1.html

CheckGeno(Geno)
or read in from several other input formats (not .vcf (yet)):
Geno <- GenoConvert(InFile = "mydata.ped", InFormat="ped")
#
read in lifehistory data: ID-Sex-birthyear, column names ignored
LH <- read.table("LifeHistoryData.txt", header=T)
#
duplicate check & parentage assignment (takes few minutes)
ParOUT <- sequoia(GenoM = Geno, LifeHistData = LH_HSg5, Err=0.005,

Module="par", quiet = FALSE, Plot = TRUE)
#
ParOUT$DupGenotype # inspect duplicates (intentional or accidental)
#
compare assigned parents to field pedigree (check column order!)
FieldPed <- read.table("FieldPed.txt", header=T)
PC.par <- PedCompare(Ped1 = FieldPed[, c("id", "dam", "sire")],

Ped2 = ParOUT$PedigreePar)
PC.par$Counts["TT",,]
#
..
polish dataset:
remove one indiv. from each duplicate pair
Geno2 <- Geno[!rownames(Geno) %in% ParOUT$DupGenotype$ID2,]
& drop low call rate samples
& drop SNPs with high error rate and/or low MAF
stats <- SnpStats(Geno, ParOUT$PedigreePar)
MAF <- ifelse(stats[,"AF"] <= 0.5, stats[,"AF"], 1-stats[,"AF"])
Geno2 <- Geno2[, -which(stats[,"Err.hat"]>0.05 | MAF < 0.1)]
#
Indiv.Mis <- apply(Geno2, 1, function(x) sum(x == -9)) / ncol(Geno2)
Geno2 <- Geno2[Indiv.Mis < 0.2,]
check histograms for sensible thresholds, iterate if necessary
#
..
run full pedigree reconstruction (may take up to a few hours)
SeqOUT <- sequoia(GenoM = Geno2,

LifeHistData = LH_HSg5,
Module = "ped",
Err = 0.001)

#
SummarySeq(SeqOUT) # inspect assigned parents, prop. dummy parents, etc.
#
check full sibs, half sibs etc.
Pairwise <- ComparePairs(SeqOUT$Pedigree, patmat = TRUE)
#
save results: single compressed .RData file, and/or folder with text files
save(SeqOUT, Geno, OtherStuff, file="Sequoia_output_date.RData")
writeSeq(SeqList = SeqOUT, GenoM = Geno, folder = "Sequoia-OUT")

2 Background
The core of Sequoia is to

4

• Assign genotyped parents to genotyped individuals (‘parentage assignment’), even if the sex or birth
year of some candidate parents is unknown;

• Cluster genotyped half- and full-siblings for which the parent is not genotyped into sibships, assigning a
‘dummy parent’ to each sibship

• Find grandparents to each sibship, both among genotyped individuals and among dummy parents to
other sibships.

Sequoia provides a conservative hill-climbing algorithm to construct a high-likelihood pedigree from data on
hundreds of single nucleotide polymorphisms (SNPs), described in Huisman (2017). Explicit consideration
of the likelihoods of alternative relationships (parent-offspring, full siblings, grandparent–grand-offspring,
. . .) before making an assignment reduces the number of false positives, compared to parentage assignment
methods that rely on the likelihood ratio between parent-offspring versus unrelated only (Thompson and
Meagher 1987). The heuristic, sequential approach used is considerably quicker than most alternative
approaches such as MCMC, and when genetic information is abundant there is little to no loss in accuracy.
Typical computation times are a few minutes for parentage assignment, and a few hours for full pedigree
reconstruction when not all individuals are genotyped.

A word of caution: the most likely relationship is not necessarily the true relationship between a pair, due to
the random nature of Mendelian segregation, and possible genotyping errors. In addition, the most likely
relationship for a pair will not necessarily result in the highest global likelihood, and may therefore not have
been assigned.

3 Key Points
3.1 Mendelian Errors
Parent and offspring will never be opposing homozygotes (one aa, other AA) at a locus, except due to
genotyping errors. This metric is easy and quick to calculate even in very large datasets, and provides a good
way to subset candidate parents (done by sequoia internally), or to check if an existing pedigree is consistent
with new genetic data (function CalcOHLLR(, CalcLLR=FALSE)).

The count of opposing homozygous (OH) SNPs is not always a reliable indicator to distinguish parents from
not-parents. When the genotyping error rate is high, true parent–offspring pairs may have a high OH count,
while some full siblings and other close relatives may have a very low OH count. Therefore, sequoia() uses
OH only as a filter to reduce the number of candidate parents for each individual, and uses likelihood ratios
for actual assignments.

3.1.1 Parent-pairs

The number of Mendelian errors in an offspring-mother-father trio includes the OH counts between offspring
and each parent, as well as cases where the offspring should have been heterozygous, but isn’t (mother aa,
father AA, offspring aa or AA), and cases where it is heterozygous, but shouldn’t be (when mother and
father are identical homozyotes). This metric is used to subset ‘compatible’ parent-pairs when there are
candidate parents from both sexes, or with unknown sex.

3.1.2 Maximum mismatches

The maximum number of Mendelian mismatches, and mismatches between potential duplicates, is from
version 2.0 onward calculated by CalcMaxMismatch(), based on the (average) genotyping error rate. This
parameter can no longer be altered directly, but can be changed via parameters Err and ErrFlavour.

3.2 Likelihoods
Assignments are based on the likelihods for all different possible relationships between a pair, calculated
conditional on all assignments made up onto that point. If the focal relationship is more likely than all
alternatives (by a margin Tassign), the assignment is made.

5

The relationships are condensed into seven categories (Table 1). Under the default settings (Complx='full'),
these also include their combinations (see section Unusual relationships](#sec:WeirdRels)), e.g. a pair may be
both paternal half-siblings and maternal aunt/niece if they were produced by a mother-daughter pair mating
with the same male.

Table 1: Main relationships considered

Relationship
PO Parent - offspring
FS Full siblings
HS Half siblings
GP Grandparental
FA Full avuncular (aunt/uncle)
HA Half avuncular (+ other 3rd degree)
U Unrelated

To reduce computational time, these likelihoods are only calculated after filtering pairs based on the number of
Mendelian errors, their age difference, and a quick calculation of LLR(focal / unrelated) without conditioning
on any earlier assigned relatives (must pass Tfilter).

For any pair of genotyped individuals, these seven likelihoods can be calculated with CalcPairLL().

3.3 Genotyping errors
3.3.1 Effect

A higher rate of genotyping errors leads to more false negatives and more false positives during pedigree
reconstruction, as illustrated in Figure 1. The magnitude of the effect varies: One wrong assignment due to a
few genotyping errors in a key individual may have numerous knock-on effects, while dozens of genotyping
errors in ‘dead end’ individuals may have no consequences at all.

The simulations (SimGeno()) assume amongst others that genotyping errors are independent from each other
and from a sample’s call rate, and likely give a more optimistic picture than real data.

3.3.2 Assumed genotyping error rate Err

The reduced performance at high genotyping error rates can be somewhat mitigated by running sequoia()
with a roughly correct presumed genotyping error rate Err (Figure 1: compare red vs yellow symbols at an
error rate of 1-2%).

Among others, when Err is much lower than the actual genotyping error rate, some true parent-offspring pairs
will be assigned as full siblings. On the other hand, when Err is much higher than the actual genotyping error
rate some true full siblings may be classified as parent-offspring, potentially leading to various ‘secondary’
errors. This trade-off can be explored using CalcPairLL() if some known parent-offspring and full sibling
pairs are available.

NOTE that the default assumed genotyping error rate of 0.01% is based on data from a SNP array after
stringent quality control; in many cases the genotyping error rate will be (much) higher 1. It is typically
worthwhile to explore if and how results change when you vary this parameter, possibly in combination with
non-default values for the thresholds Tfilter and Tassign. Do keep in mind the relative consequences of
potential misassignments (false positives) versus non-assignments (false negatives) during later use of the
pedigree.

1but changing the default value is likely to cause problems for people re-using old code.

6

1e−05 1e−04 1e−03 1e−02 1e−01

Per replicate
N

on
−

as
si

gm
en

t
(P

1o
nl

y)

0

1e−04

0.001

0.01

0.1

1e−05 1e−04 1e−03 1e−02 1e−01

M
is

as
si

gn
m

en
t

(M
is

m
at

ch
 +

 P
2o

nl
y)

SnpError (SimGeno)

0

1e−04

0.001

0.01

0.1

1e−05 1e−04 1e−03 1e−02 1e−01

Mean across replicates

0

1e−04

0.001

0.01

0.1

Err (sequoia)

1e−04
0.001
0.01

1e−05 1e−04 1e−03 1e−02 1e−01

SnpError (SimGeno)

0

1e−04

0.001

0.01

0.1

Figure 1: High simulated genotyping error rate (x-axes) increases both false negatives (top) and false positives
(bottom). A roughly correct presumed error rate (colours) improves performance. Results from pedigree
Ped_HSg5 with 200 SNPs, call rate 0.99, 40% of parents non-genotyped. Diamonds: means across 10 replicates.

3.3.3 Performance with high genotyping error rates

sequoia does not cope well with high rates of genotyping errors, as the sequential approach (see Background)
can lead to a cascading avalanche of assignment errors. If the rate is around 1%, be cautious when interpreting
the results and please use EstConf() to estimate the assignment error. With genotyping error rates above
5% I would strongly suggest to use MCMC-based approaches, or other approaches more robust to poor
genotyping quality.

Assignment of genotyped parents to genotyped offspring is fairly robust to low SNP number and high
genotyping errors (left-most column in Figure 2), while pedigree links involving a dummy individual are more
prone to mis-assignment and non-assignment (columns 2-4 in Figure 2). In these simulations, all SNPs are
completely independent, call rate is high, and founders are unrelated; in real data the overall performance is
probably lower but the patterns will be similar.

3.3.4 Effect on runtime

Computational time tends to increases with both simulated and assumed genotyping error rate, as the
time-saving filtering steps become less effective (Figure 3).

3.3.5 Error matrix

Different genotyping methods are likely to have different error structures (Table 2). Therefore, from version
2.0 sequoia allows fine-scale control over how potential genotyping errors are accounted for. An error matrix
with the probability to observe genotype G (columns), conditional on actual genotype g (rows), can now be
specified via parameter ErrFlavour. The current default (version2.0) is given in Table 2, and previous

7

100 200 400nSnp:

0.0

0.2

0.4

0.6

0.8

1.0

N
on

−
as

si
gn

m
en

t
(P

1o
nl

y)
Genotyped
Genotyped

1562.2 (1416 : 1690)

Offspring:
Parent:

n:

Err

1e−04
0.001
0.01
0.05

100 200 400

Genotyped
Dummy

984.3 (859 : 1147)

100 200 400

Dummy
Genotyped

101.6 (76 : 126)

100 200 400

Dummy
Dummy

61.1 (41 : 83)

100 200 400nSnp:

0.00

0.05

0.10

0.15

M
is

as
si

gn
m

en
t

(M
is

m
at

ch
 +

 P
2o

nl
y)

100 200 400 100 200 400 100 200 400

Figure 2: Non-assignment (top) and assignment errors (bottom) for a range of SNP numbers (x-axes) and
simulated genotyping errors (colours). sequoia presumed error rates (‘Err’) set equal to simulated error
rates. Results for a deer pedigree with overlapping generations and inbreeding; 40% of parents were presumed
non-genotyped, call rate=0.99 for remainder.

1e−05 1e−04 1e−03 1e−02 1e−01

Pedigree Ped_HSg5

SnpError (SimGeno)

T
im

e
(m

)

0

5

10

15

20

25

30 Err (sequoia)

1e−04
0.001
0.01

Deer pedigree

nSnp

T
im

e
(m

)

100 200 400

0
15
30
45
60
75
90

105
120
135
150
165
180
195
210
225
240
255 Err

1e−4
1e−3
1e−2
5e−2

Figure 3: Runtimes are shorter with lower genotyping error rates and more SNPs

defaults are shown in the help file of ErrToM(). The slight differences between versions only have any
consequences when the error rate is high (> 1).

During pedigree inference, the error rate is presumed equal across all SNPs. It is also assumed that none of
the errors (or missingness) are due to heritable mutations.

8

3.3.6 Estimate

Function SnpStats() can estimate the genotyping error rate per SNP, conditional on a provided pedigree
and error structure (ErrFlavour). These estimated error rates will not be as accurate as from duplicate
samples, since a single error in an individual with many offspring will be counted many times, while errors in
individuals without parents or offspring will not be counted at all.

3.4 Birth years & Ageprior
Providing individual birth years will typically greatly improve the completeness and speed of pedigree
reconstruction. Age data is used to subset the potential relationships between each pair, and is required to
orientate parent–offspring pairs the right way around. Birth year information is not strictly required for every
individual: parent-parent-offspring trios can be assigned even in absence of any age data, as long as the sex
of either parent is known.

‘Birth year’ should be interpreted loosely, as the time unit (week/month/year/decade/. . .) of
birth/hatching/germination/. . . .

For individuals (or ‘mystery samples’) with unknown birth years, the probability that they were born in year
y can be estimated using CalcBYprobs(). This relies on the (estimated) birth years of their parents and
offspring, and the age distribution of parent-offspring pairs as specified in the age prior.

3.4.1 Definition & interpretation

The ‘agepriors’ as used by sequoia() is not an official term, nor a proper prior, but a set of age-difference
based probability ratios which can be interpreted as

If I were to pick two individuals with an age difference A, and two individuals at random, how
much more likely are the first pair to have relationship R, compared to the second pair?

The value may vary from 0 (impossible), to 1 (just as likely), and typically not far beyond 10 (10x as likely).
This quantification allows age differences to be used jointly with genetic information, which is mostly done in
a conservative fashion (except when UseAge='extra'): only when the focal relationship is the most likely
both when considering only genetic data, and when considering genetic + age data, is the assignment made.
‘Most likely’ applies to from the set of possible relationships, i.e. those with an age prior value > 0.

For example, in datasets with only one or two ageclasses, it is worth contemplating whether or not avun-
cular relationships should be considered as alternatives to siblings. The behaviour can be changed by
explicitly declaring generations as Discrete (avuncular cannot have age difference of 0), and/or by setting
MaxAgeParent.

You can find extensive details about the ageprior in this separate vignette, including worked examples,
mathematical framework, and full range of options.

3.4.2 Implementation

Parentage assignment is run with an ageprior only specifying that parents and offspring cannot be the
same age. The resulting ‘scaffold pedigree’ is then used by MakeAgeprior() to estimate the dataset-specific
age-difference distributions for each relationship (mother, father, full sibling, maternal and paternal half

Table 2: Probability of observed genotype (columns) conditional on actual genotype (rows) and per-locus
error rate E

aa Aa AA
aa (1 − E/2)2 E × (1 − E/2) (E/2)2

Aa E/2 1 − E E/2
AA (E/2)2 E × (1 − E/2) (1 − E/2)2

9

https://CRAN.R-project.org/package=sequoia/vignettes/vignette-age.pdf

sibling), which are standardised by the age-difference distribution among all pairs. The resulting ageprior
probability ratios are then used during full pedigree reconstruction (Figure 4).

Default
Ageprior

Duplicate
check

Parentage
assignment

Pedigree-
based

Ageprior

Full Pedigree
Reconstruction

LifeHistData
MaxAgeParent

Custom
Ageprior

Smooth
Flatten

OUT

OUT

Figure 4: Ageprior pipeline overview

When running sequoia(), arguments can be passed to MakeAgePrior() via args.AP.

3.4.3 Smooth & Flatten

Often not all biologically possible age-differences are present in the scaffold pedigree. Therefore
MakeAgeprior() by default applies a correction to allow for relatives to differ 1-2 years more in age than
observed in its input pedigree, and to smooth out any dips or gaps in the age distributions. However, when
such abrupt terminations or gaps are biologically meaningful, these corrections can and should be turned off
(Smooth=FALSE and/or Flatten=FALSE). This is done automatically in case discrete generations are declared
(Discrete=TRUE) or detected in the scaffold pedigree.

3.4.4 Age-based non-assignment

Any genetically identified parent-offspring pairs and other relatives which are deemed impossible based on
their age difference and the age prior matrix, and thus not assigned, can be found by GetMaybeRel(). You
may then correct or discard their birth years and/or update the ageprior to allow for their age difference (see
Customising the ageprior), and re-run pedigree reconstruction.

3.5 Parent LLR
When parentage assignment or pedigree reconstruction is completed (when the total likelihood has asymptoted),
a log10-likelihood ratio (LLR) is calculated for each assigned parent-offspring pair. This is

The ratio between the likelihood of being parent and offspring, versus the next-
most-likely relationship between them, conditional on all other relationships in the
pedigree.

This differs from for example Cervus (Marshall et al. 1998), which returns the ratio between the likelihood
that the assigned parent is the parent, versus that the next most likely candidate is the parent.

The LLRs for the dam and sire separately are calculated by temporarily dropping the co-parent (if any), and
calculating the likelihoods assuming the co-parent is a random draw from the population. The LLR for the
parent-pair is the minimum of the dam and sire LLR, each conditional on the co-parent. To retrieve the
likelihoods underlying each ratio, use CalcPairLL(); specify column dropPar1 for single-parent likelihoods.

Since this step can be quite time-consuming, sequoia() can be run with CalcLLR=FALSE, and CalcOHLLR()
can be run separately later. That function can also calculate parental LLR’s for any existing pedigree,
including for any non-genotyped individuals with at least one genotyped offspring.

3.6 Confidence
The parental likelihood ratio does not necessarily indicate how likely it is that the assignment is correct.
Pedigree-wide confidence probabilities can, among others, be estimated as follows

10

• Simulate genotype data according to the reconstructed (or an existing) pedigree, imposing realistic
levels of missingness and genotyping errors (SimGeno());

• Reconstruct a pedigree from the simulated data (sequoia());
• Count the number of mismatches between the ‘true’ (input) pedigree and the pedigree reconstructed

from the simulated data (PedCompare()).

When repeated at least 10–20 times, the proportion of assignments that is correct then provides an estimate of
the confidence probability. This will be an optimistic estimate, as SimGeno() assumes all SNPs are independent,
that parental genotypes are missing at random, and makes various other simplifying assumptions.

This process is conveniently wrapped in the function EstConf(), which calculates separate confidence levels
for dams and sires (which may have very different sampling proportions), for genotyped and dummy parents,
and for single parents and members of parent-pairs. The process can be rather time consuming, but from
version 2.1 onwards it is possible to run on multiple computer cores in parallel.

3.7 Low assignment rate
Pedigree reconstruction with sequoia() regularly suffers from a low assignment rate, especially when only
a small proportion of parents have been genotyped. This is fundamental to the method: when in doubt,
MCMC approaches will return an assignment with a low posterior probability, but sequoia() will return no
assignment at all.

In sequoia(), an incorrect assignment early on may cause a cascade of other incorrect assignments later
in the run, and great care is taken to prevent this. On the flip side, when there is limited genetic or birth
year information and/or very few parents have been genotyped, the cascade of correct assignments, where
maternal assignments fascilitate paternal assignments and v.v. (Figure 5), may never take off. For such
situations, different programs with MCMC based approaches are more suitable.

Figure 5: Sibship clustering of individuals A-D

3.7.1 Causes

There are four main causes a pair of true relatives are not assigned, which are not mutually exclusive:

1. There is more than one type of relationship possible between the pair, which cannot be distinguished
with certainty (details below);

2. The type of relationship is clear (e.g. half siblings), but it is unclear whether they are maternal or
paternal relatives;

3. It is clear the pair are mother and daughter (or grandmother – grand-granddaughter), but it is unclear
which of the two is the (grand)mother, due to unknown birth year(s) and absence of a ‘complementary’
candidate father (and analogous for father-son);

4. There is more than one plausible candidate (dummy) (grand)parents of one sex, all of which are more
likely to be a parent than otherwise related, even when considered jointly. This includes the situation
where true offspring are among the candidate parents due to unknown birth years.

For more details, see FAQ.

Cause (1) has two common underlying causes, which again are not mutually exclusive:

1a. Half-siblings, grandparent–grand-offspring and full avuncular pairs are genetically indistinguishable, even
with perfect genetic data. Assignment of half-sibling pairs is only possible when grand-parental and avuncular
relationships can be excluded based on the age-difference of the pair, or when both individuals already have
a parent assigned (in which case the likelihoods do differ). 1b. The SNP data is not informative enough to

11

clearly distinguishing between parents and full siblings, between full and half siblings, between half siblings
and cousins, etc.. The problem may be specific to a few pairs and due to the randomness of Mendelian
segregation, or be widespread due to a low number of SNPs, low MAF, and/or high error rate.

3.7.2 Remedies

Sometimes it is possible to reduce the number of non-assigned parents in the pedigree by providing more life
history data, removing SNPs with the highest error rates, or lowering the thresholds Tfilter and/or Tassign.
The latter will reduce the probability of false negatives, but at the same time increase the probability for false
positives. If inbreeding and double relationships are rare, using Complx='simp' may also improve assignment
(see here).

Small adjustments may ‘get the snowball rolling’ (Figure 5) and greatly increase assignments. Once a sibling
pair is assigned, adding additional siblings to the cluster becomes progressively easier as it becomes more and
more obvious whether an individual is related to all individuals in the sibship, or to none.

There are functions in the package that may help identify whether there are un-assigned likely relatives in
the dataset, and/or the probable cause of non-assignment of presumed relatives:

• GetMaybeRel() will identify any pairs that are likely to be 1st or 2nd degree relatives. It can do so
as-is, or conditional on a (reconstructed) pedigree. It may also provide clues whether this is e.g. due to
unknown birth years or an impossibility to tell the different 2nd degree relationships apart (TopRel =
‘2nd’).

• CalcPairLL() will return for a specified set of pairs the likelihoods to be parent-offspring, sibling, . . .
(Table 1). The pairs may be the output from GetMaybeRel(), or e.g. pairs of litter mates. This may
e.g. show that it is unclear whether the pair are full or half siblings, but they are probably either one or
those. Or it may show the pair are probably either half-siblings or 3rd degree relatives (half-avuncular,
cousins, great-grandparent). The latter may be ‘declared’ half-siblings if the breeding scheme or field
data (e.g. being litter mates) makes 3rd degree relatives highly unlikely. You can specify a pedigree
and/or ageprior to condition on, and can include a pair multiple times with different age difference or
focal relationship to explore their effects on the likelihoods and thereby the LLR.

12

Table 3: Core functions with selected subset of their required (Y) and optional (+) input, and their output
that can be re-used as input in other functions.

Function GenoM Pedigree Pairs AgePrior SeqList Reusable output Plot function
sequoia Y + + Pedigree, SeqList SeqListSummary
GetMaybeRel Y + + Pairs PlotRelPairs
CalcOHLLR Y Y + + SeqListSummary
CalcPairLL Y + Y + + PlotPairLL
MakeAgePrior + AgePrior PlotAgePrior
SimGeno Y GenoM SnpStats
PedCompare YY PlotPedComp
ComparePairs Y+ + Pairs PlotRelPairs

4 Function overview
4.1 Input

• GenoConvert
Read in genotype data from PLINK file, Colony file, or many user-specified formats, and return a
matrix in sequoia’s (or Colony) format. Does not support vcf yet.

• LHConvert
Extract sex and birth year from PLINK file; optionally recode sex to 1=female, 2=male, check consistency
with other LifeHistData, or combine family ID and individual ID into FID__IID.

• CheckGeno
Check that the provided genotype matrix is in the correct format, and check for low call rate samples
and SNPs

• SnpStats
Calculate per-SNP allele frequency, missingness, and, if a pedigree provided, number of Mendelian
errors.

• CalcMaxMismatch
Calculate the maximum expected number of mismatches for duplicate samples, and Mendelian errors
for parent-offspring pairs and parent-parent-offspring trios.

4.2 Simulate
• SimGeno

Simulate genotype data for independent SNPs. Specify pedigree, founder MAF, call rate, proportion of
non-genotyped parents, genotyping error & error model.

• MkGenoErrors
Add genotyping errors and missingness to genotype data; more fine-scale control than with SimGeno.

4.3 Ageprior
• MakeAgePrior

For various categories of pairwise relatives (R), calculate age-difference (A) based probability ratios
P (A|R)/P (A) = P (R|A)/P (R), or how much likelier a relationship is given the age difference. It
applies corrections when the skeleton-pedigree contains few/no pairs with known age difference for some
relationships.

• PlotAgePrior
Visualise the age-difference based prior probability ratios as a heatmap.

13

4.4 Pedigree reconstruction
• sequoia

Main function to run parentage assignment and full pedigree reconstruction, calls many of the other
functions.

• GetMaybeRel
Identify pairs of individuals likely to be related, but not assigned as such in the provided pedigree.
Either search only for potential parent-offspring pairs, or for all 1st and 2nd degree relatives.

4.5 Pedigree check
These functions can be applied to any pedigree, not just pedigrees reconstructed by sequoia. Required input
between brackets

• SummarySeq (1 pedigree)
Graphical overview of the assignment rate, the proportion dummy parents, sibship sizes, parental LLR
distributions, and Mendelian errors, + tables with pedigree summary statistics.

• CalcOHLLR (pedigree + genotypes)
Count opposite homozygous (OH) loci between parent-offspring pairs and Mendelian errors (ME)
between parent-parent-offspring trios, and calculate the parental log-likelihood ratios (LLR).

• EstConf (pedigree + genotypes)
Estimate assignment error rate (false positives & false negatives). Using a reference pedigree, repeatedly
simulate genotype data, run sequoia, and compare inferred to reference pedigree.

• getAssignCat (1 pedigree)
Identify which individuals are genotyped, and which can potentially be substituted by a dummy
individual. ‘Dummifiable’ are those non-genotyped individuals with at least 2 genotyped offspring, or
at least 1 genotyped offspring and 1 genotyped parent.

• PedCompare (2 pedigrees)
Compare 2 pedigrees, e.g. field and genetically inferred, or reference and inferred-from-simulated-data.
Matches dummy parents to non-genotyped parents.

• CalcRped (1 pedigree) This is a wrapper for kinship() in package kinship2.

4.6 Pairwise relationships
• CalcPairLL (pairs + genotypes) For each pair, calculate the log10-likelihoods of being various different

types of relative, or unrelated.

• GetRelCat (1 pedigree)
Determine the relationship between individual X and all other individuals in the pedigree, going up to
1 or 2 generations back.

• GetRelM (pedigree or pairs) Generate a matrix with all pairwise relationships from a pedigree or
dataframe with pairs

• ComparePairs (1 or 2 pedigrees)
Compare, count and identify different types of relative pairs between two pedigrees, or within one
pedigree. 2

• PlotRelPairs (matrix) plot pairwise relationships between all individuals, as by Colony.
2The matrix returned by DyadCompare (Deprecated) is a subset of the matrix returned here using default settings.

14

4.7 Miscellaneous
• PedPolish

Ensure all parents & all genotyped individuals are included, remove duplicates, rename columns, and
replace 0 by NA or v.v. Can also generate ‘filler’ parents for software that requires individuals to have
either 0 or 2 parents, never 1.

• getGenerations For each individual in a pedigree, count the number of generations since its most
distant pedigree founder.

• ErrToM
Generate a matrix with the probabilities of observed genotypes (columns) conditional on actual genotypes
(rows), or return a function to generate such matrices. The error matrix can be used as input for
sequoia and CalcOHLLR, the error function as input for SimGeno

• writeSeq
Write the list with sequoia output in human-readable format, either as a folder with .txt files, or as a
many-tabbed excel file. The latter uses R package xlsx, which requires java and can (therefore) be
cumbersome to install.

• writeColumns
write data.frame or matrix to a text file, using white space padding to keep columns aligned.

• FindFamilies
Add a column with family IDs (FIDs) to a pedigree, with each number denoting a cluster of connected
individuals.

• PedStripFID
Reverse the joining of FID and IID in GenoConvert and LHConvert

• ** CalcBYprobs** Estimate the probability that individual i with unknown birth year is born in year y,
based on the birthyears of its parents and offspring.

5 sequoia() input
5.1 Genotypes
The SNP data should be provided as a numeric matrix GenoM with one line per individual, and one column
per SNP, with each SNP is coded as 0, 1, 2 copies of the reference allele, or missing (-9). The rownames
should be the individual IDs, and column names are ignored.
GenoM <- as.matrix(read.table("MyGenoData.txt", row.names=1, header=FALSE))

When the genotype data is in another format, such as Colony input files or PLINK’s .ped or .raw files,
GenoConvert() can be used.

5.1.1 Subset SNPs

Using tens of thousands of SNP markers for pedigree reconstruction is unnecessary, will slow down computation,
and may even hamper inferences by their non-independence. Rather, a subset of SNPs with a decent genotyping
call rate (e.g. > 0.9), in low linkage disequilibrium (LD) with each other, and with high minor allele frequencies
(e.g. MAF > 0.3) ought to be selected first if more than a few hundred SNPs are available. The calculations
assume independence of markers, and while low (background) levels of LD are unlikely to interfere with
pedigree reconstruction, high levels may give spurious results. The recommended maximum number of SNPs
therefore depends on genome size and chromosome number. Markers with a high MAF provide the most
information, as although rare allele provide strong evidence when they are inherited, this does not balance
out the rarity of such events.

15

It is advised to ‘tweak’ the filtering thresholds until a set with a few hundred SNPs (300–700) is created. To
assist with this, the function SnpStats() gives for each SNP both the allele frequency and the missingness.
In addition, when a pedigree is provided (e.g. an existing one, or from a preliminary parentage-only run), the
number of Mendelian errors per SNP is calculated and used to estimate the genotyping error rate.

5.1.2 PLINK

Since the full dataset may be too large to easily load into R, creating a subset of SNPs can for example be
done using PLINK:

plink --file mydata --geno 0.1 --maf 0.3 --indep 50 5 2

which on a windows machine is equivalent to running inside R
system("cmd", input = "plink --file mydata --maf 0.3 --indep 50 5 2")

This will create a list of SNPs with a missingness below 0.1, a minor allele frequency of at least 0.3, and
which in a window of 50 SNPs, sliding by 5 SNPs per step, have a VIF of maximum 2. VIF, or variance
inflation factor, is 1/(1 − r2). For further details, see the plink website.

The resulting list (plink.prune.in) can be used to create the genotype file used as input for Sequoia, with
SNPs codes as 0, 1, 2, or NA, with the command

plink --file mydata --extract plink.prune.in --recodeA --out inputfile_for_sequoia

This will create a file with the extension .RAW, which can be converted to the required input format using
GenoM <- GenoConvert(InFile = "inputfile_for_sequoia.raw", InFormat="raw")

This function can also convert from two-columns-per-SNP format, as e.g. used by Colony.

5.1.2.1 Family IDs By default, the ‘Family ID’ (1st) column in the PLINK file is ignored, and IDs are
extracted from the second column only. If the family IDs are essential to distinguish between individuals, use
GenoConvert() with the flag UseFID = TRUE which will combine individual IDs and family IDs as FID__IID.
Ensure the IDs in the life history file are in the same format, for example by using LHConvert(). The FID
and IID can be split again in the resulting pedigree using PedStripFID().

5.1.3 Low call rate

Samples with a very low genotyping success rate (call rate) can sometimes wrongly be assigned as parents
to unrelated individuals, as sequoia() does not (yet) deal perfectly with these cases. In addition, at least
in my experience with SNP arrays, a low sample call rate is often indicative of poor sample quality or a
poor genotyping run, and associated with a high sample error rate. Samples with a call rate below 5% are
automatically excluded, but it is strongly advised to create a subset where all individuals are genotyped for
at least 50% of SNPs, and preferably for at least 80%.

In addition, SNPs with a call rate below 10% are excluded, as these contribute almost no information. Again,
a stricter threshold is advised of at least 50% to minimise the risk of spurious results.

Checks for individuals and SNPs with low call rate, and monomorphic SNPs, are done automatically when
calling sequoia() and various other functions, and can be done separately by calling CheckGeno().

5.1.4 Very large datasets

When the number of individuals is very large, it may be impossible to load the genotype data into R as
it will exceed R’s memory limit. A stand-alone version of the algorithm underlying this R package does
not suffer from this limitation, and is available as Fortran source code from github, where you can also find
its manual. The standalone is not faster than the R package, as the bulk of the computations are done in
Fortran regardless.

16

https://www.cog-genomics.org/plink/
https://www.cog-genomics.org/plink2/ld#indep
https://github.com/JiscaH/sequoia_notR

5.2 Birth years & sex
The relative age of individuals can greatly improve pedigree reconstruction (see Birth years & Ageprior), and
sex information is necessary to determine whether a candidate parent is the mother or father.

5.2.1 LifeHistData

The life history data (LifeHistData) should be a dataframe with three or five columns (column names are
ignored, order is important!):

• ID
It is probably safest to stick to R’s ‘syntactically valid names’, defined as “consists of letters, numbers
and the dot or underline characters and starts with a letter, or the dot not followed by a number”.

• Sex
1 = female, 2 = male, 3=unknown, 4=hermaphrodites. All other numbers, letters, or NA = unknown

• BirthYear
Year of birth/hatching/germination/. . . In species with more than one generation per year, a finer
time scale than year of birth ought to be used (in round numbers), ensuring that parents are always
‘born’ in a time unit prior to their first offspring (e.g. parent’s BirthYear=2001 (t = 1) and offspring
BirthYear=2005 (t = 5)). Negative numbers and NA’s are interpreted as unknown.

• BY.min (optional)
Earliest year in which individual may have been born, if exact year is unknown. Ignored when BirthYear
is non-missing.

• BY.max (optional)
Latest year in which individual may have been born

Ideally this basic life history information is provided for all genotyped individuals, but this is not strictly
necessary. This dataframe may be in a different order than the genotype data, and may include many more
individuals (which are ignored).

5.2.2 Unknown birth years

The year of birth may be unknown for some individuals, and for those sequoia() cannot determine whether
they are the parent or the offspring if a genetic parent-offspring pair is found (unless a ‘complementary’
co-parent is identified). Especially in wild populations this information can be unknown for a substantial
part of the sample, but often a minimum and/or maximum possible birth year (BY.min and BY.max) can be
determined. For example, BY.max is at the latest the first year in which an individual was observed.

Even very wide ranges may help in pedigree reconstruction: for example, Alpha and Beta are genetically
identified to be parent and offspring, Alpha was first seen in 2011 as an adult, and Beta was known to be
born 2012 (Table 4). Then Alpha is certainly the parent of Beta. Before version 2.0 there was no method to
inform sequoia that Alpha could not have been born after 2012, and thus could not be an offspring of Beta.
It was (and still is) possible to ‘guestimate’ birth years, but this can be time consuming and is potentially
prone to errors. For example, if Alpha also forms a genetic parent-offspring pair with Gamma, then setting
Alpha’s birth year to 2010 will result in it being assigned as Gamma’s offspring, while it may just as well be
Gamma’s parent.

To minimise such pedigree errors where parent and offspring are flipped the wrong way around, and the

Table 4: Example LifeHistData with the optional columns for minimum + maximum birth year

ID Sex BirthYear BY.min BY.max
Alpha 2 NA NA 2010
Beta 2 2012 NA NA
Gamma 1 NA 2008 2009

17

‘secondary’ errors derived from these cases, it is recommended to set the possible birth year range as wide as
possible, at least during an initial (preliminary) round of parentage assignment. To see the pairs that are
genetically parent and offspring, but for which it cannot be determined which of the two is the parent, use
function GetMaybeRel().

5.2.3 args.AP (Customising the ageprior)

When running sequoia(), you can pass arguments to MakeAgePrior() via args.AP. For example, when you
are sure generations do not overlap, you can specify this via MakeAgePrior()’s argument Discrete:
SeqOUT <- sequoia(GenoM = SimGeno_example, LifeHistData = LH_HSg5, Module='par',

args.AP = list(Discrete = TRUE))

Genotype matrix looks OK! There are 214 individuals and 200 SNPs.

Ageprior: Flat 0/1, discrete generations, MaxAgeParent = 1,1

Minor allele frequency

0.20 0.30 0.40 0.50

0
12

0.25 0.35 0.45

0.
00

0

Minor allele frequency

M
is

si
ng

ne
ss 5% worst HWE

Missingness

0.000 0.015 0.030

0
80

0.25 0.35 0.45

0.
0

Minor allele frequencyH
W

E
 te

st
: −

lo
g1

0(
p)

5% worst Mis

0.000 0.015

0.
0

MissingnessH
W

E
 te

st
: −

lo
g1

0(
p)

5% worst MAF

HWE test: −log10(p)

0.0 1.0 2.0

0
50

##
~~~ Duplicate check ~~~

##
~~~ Parentage assignment ~~~

Parentage ...
Initial total LL :
[1] -18301.9
Post-parentage total LL :
[1] -13690.07
Estimating birth years ...
Calculating parental LLR ...

assigned 126 dams and 165 sires to 214 individuals

Possibly not all parents were assigned, consider running GetMaybeRel() conditional on this pedigree to check

18

A
ge

 d
iff

er
en

ce
 (

A
)

0

1

2

M P FS MS PS

Relationship (R)

0
0.001
0.02
0.05
0.1
0.2
0.25
0.333
0.5
1
2
3
4
5
10
20
50

P(A|R)/P(A)

Or you can specify that the maximum age of (non-genotyped) parents exceeds the observed age range among
SNP-genotyped parent-offspring pairs in PedigreePar:
SeqOUT <- sequoia(GenoM = Geno, LifeHistData = LH,

args.AP = list(MaxAgeParent = c(11, 9)), # dams, sires
SeqList = ParOUT[c("Specs", "PedigreePar")])

Alternatively, if you have a field-pedigree or microsatellite-based pedigree that contains many more individuals
than have been SNP-genotyped, an ageprior estimated from that old pedigree will be more informative than
the one estimated from a limited number of SNP-genotyped parent-offspring pairs. This can be done as
follows:
APfromOld <- MakeAgePrior(Pedigree = MyOldPedigree,

LifeHistData = LH,
Smooth = TRUE)

SeqOUT <- sequoia(GenoM = Geno,
LifeHistData = LH,
SeqList = list(AgePriors = APfromOld))

When argument SeqList contains an element AgePriors, it is used during both parentage assignment and
sibship clustering. Thus, if you wish to use different agepriors during those different phases, you need to run
them separately (see reuse).

For further information on the ageprior, please see the separate vignette on this topic. If you wish to manually
edit the AgePriors matrix before using it as input in sequoia(), or have done so in the past, it is advised
to look at the latest version of this document, as the implementation has changed in package version 2.0, and
the documentation was clarified in version 2.1.

5.3 Tfilter & Tassign
These are threshold values for log10-likelihood ratios (LLRs).

Tfilter is the threshold LLR between a proposed relationship versus unrelated, to select candidate relatives.
It is typically negative, and a more negative value may prevent filtering out of true relatives, but will increase
computational time.

19

Tassign is the threshold used for acceptance of a proposed relationship, and is relative to next most likely
relationship. It must be positive, with higher values resulting in more conservative assignments. Counter-
intuitively a high Tassign can sometimes increase the number of wrong assignments, as a correct low-threshold
assignment may prevent wrong assignments among close relatives (a.o. by revealing genotyping errors and
changing the most-likely true genotype of an individual).

The default values of Tfilter and Tassign seem to work well in a wide range of datasets, but their interaction
with genotyping error rate and other dataset characteristics has not been thoroughly explored.

5.4 Complex
The complexity of the mating system considered. One of:

• mono Only consider monogamous matings. This can be especially useful for small SNP panels that have
insufficient power to distinguish reliably between full siblings and half-siblings, but may have ample
power to distinguish between full siblings and third degree relatives (e.g. full cousins). Works well when
full aunts/uncles and grandparents differ consistently more in age than full siblings, and do not have to
be considered as alternatives to full sibling either.

• simp Consider polygamous matings, but ignore all inbred and double relationships (see below). Such
relationships may still be assigned as side-effect. This again can be useful if the SNP panel has limited
power, and the occurrence of such complex relationships is very rare.

• full The default, do consider all kinds of relationship combinations.

5.4.1 Unusual relationships

Pedigree inference is often applied in small, (semi-)closed populations, and is regularly done to check for
inbreeding. In such cases, pairs of individuals may be related via more than one route. For example, maternal
half-siblings may also be niece and aunt via the paternal side, and be mistaken for full-siblings. Or a pair may
be both paternal half-siblings, and maternal full cousins. A range of such double relationships is considered
explicitly (Table 5) to minimise such mistakes. If such a type is common in your population but not yet
considered by sequoia, and seems to be causing problems, please send me an email as adding additional
relationships is relatively straightforward.

Table 5: Double relationships between pairs of individuals. Abbreviations as before, and GGG=great-
grandparent, F1C=full first cousins, H1C=half first cousins (parents are HS).

PO FS HS GP FA HA GGG F1C H1C U
PO – – Y Y Y Y
FS – – – – – Y – Y Y
HS Y – (FS) Y Y 2 Y Y 2 Y
GP Y – Y 1 Y
FA – Y Y
HA Y Y 2 Y
GGG – 3 Y
F1C Y

–: impossible
Y: explicitly considered
empty: not (yet) explicitly considered (but may be inferred as ‘side effect’)
1: Can not be considered explicitly, as likelihood identical to PO
2: Including the special case were one is inbred
3: Can not be considered explicitly, as likelihood identical to GP

20

5.5 Herm
Hermaphrodites, one of: * no Dioecious (separate sexes) species * A Heed dam versus sire role of individuals,
and assign a parent only if it is clear that it was the female or male parent of an individual. Requires a
pedigree prior (e.g. the plant from which the seed was collected), or age difference between maternal versus
paternal role (see Hermaphrodites. * B No distinction is made between dam versus sire role; any parent is
assigned in the first available ‘slot’, and no conclusions can be drawn from whether individuals are assigned
as maternal, paternal or ‘cross’ half-siblings.

If any individuals in the life history data have sex=4, Herm='no' will automatically be changed into Herm='A'.
Hermaphrodites may be mixed with known-sex (or known sex role) individuals. Herm='A' or ‘B’ can also be
selected if none of the genotyped individuals are hermaphrodites, but non-genotyped (dummy) parents could
be.

5.6 UseAge
The strength of reliance on birth year information during full pedigree reconstruction.

In addition to providing no birth year information at all, there are three possible levels of reliance on birth
years and ageprior during full pedigree reconstruction:

• no Only use the ageprior matrix to determine which age difference – relationship combinations are
possible and which are not, i.e. simplifying the ageprior to a 0/1 (FALSE/TRUE) matrix.

• yes (default) Use age information in a restrictive way: only accept a proposed assignment if both the
purely genetic LLR (LLRSNP) and the sum of LLRSNP and log10 of the ageprior’s probability ratios
(LLRage) pass Tassign (Note that the ageprior matrix is not on a log scale, and that log(0) = −Inf ,
and log(1) = 0). Thus, relationships that are genetically likely but unlikely based on the age difference,
will not be assigned.

• extra Use age information in a permissive way: accept a proposed assignment if LLRSNP + LLRage

passes Tassign, even if LLRSNP on its own does not. Thus, a pair for which genetically the relationship
is ambivalent (e.g. ‘either one of HS, GP, FA’), but whose age difference makes one of these relationships
(much) more likely, are now also assigned (see example). The risk of a cascading avalanche of assignment
errors is reduced by first running the algorithm as for UseAge = 'yes', and only once the total
likelihood has plateaued switching to UseAge = 'extra' (and continuing until the total likelihood
plateaus again).

Table 6: Parameter ’UseAge’ (see text for definitions)

no yes extra
LRage > 0 Y Y Y
LLRSNP > Tassign Y Y
LLRSNP + LLRage > Tassign Y Y

Below an example of how to calculate LLRSNP and LLRage, for a grandparent – grand-offspring pair from
the griffin example pedigree, with an age difference of 4 years. This pair would not be assigned with UseAge
= 'yes', as purely genetically the likelihoods for the pair being HS, GP or FA are identical (unless both
individuals already have at least 1 parent assigned), but would get assigned with UseAge = 'extra', as
in this fictional population 4-year-older paternal grandmothers are about 10x as common as 4-year-older
paternal aunts (difference of 1 unit on log10-scale).

Such assignments which rely strongly on the age difference of a pair, in combination with the estimated
age distribution of relative pairs, are often not desirable, and are therefore not made by default (UseAge =
'yes').
data(Ped_griffin, SeqOUT_griffin, package="sequoia")
GenoX <- SimGeno(Ped_griffin, nSnp = 400, ParMis=0)

21

Table 7: LLR example for a grandparent - grand-offspring pair

PO FS HS GP FA HA U
SNP -382.2 -333.9 -323.9 -323.9 -323.9 -323.8 -327.2
Age -0.4 -3.0 -3.0 0.3 -0.3 -0.3 0.0
SNP + Age -382.6 -336.9 -326.9 -323.6 -324.3 -324.1 -327.2

LLR_SNP <- CalcPairLL(Pairs = data.frame(ID1="i122_2007_M", ID2="i042_2003_F"),
GenoM = GenoX, Plot=FALSE)

LLR_Age <- GetLLRAge(SeqOUT_griffin$AgePriorExtra, agedif=4, patmat=2)
knitr::kable(rbind(SNP = LLR_SNP[,colnames(LLR_Age)],

Age = LLR_Age,
"SNP + Age" = LLR_SNP[,colnames(LLR_Age)] +

LLR_Age),
digits=1, booktabs=TRUE,
caption = "LLR example for a grandparent - grand-offspring pair")

5.7 SeqList
Parameter settings and input data from one sequoia() run can be re-used in a subsequent sequoia() run,
and as input by various other functions (Table 3). This makes it easier to have consistent parameter values
and input data across different pedigree inference runs and different functions.

The parameter values used as arguments when calling sequoia() are returned in the list element Specs.
This 1-row dataframe may be edited (with caution!) before re-use. Other elements of the sequoia()
output list (SeqList) that are used as input by one or more functions are LifeHist, AgePriors, and
PedigreePar/Pedigree. Details on which elements are used is provided in the help file of each function.
SeqList[["Specs"]] nearly always take precedent over similarly-named input parameters, with exception of
e.g. sequoia()‘s Module argument. The other SeqList elements generally also take precedent, but not always
with a warning. If you wish to use a mixture of SeqList elements and ’new’ data, it is safest to provide only
the minimal subset of SeqList, and specify the other data as separate input (or as ‘fake’ SeqList elements).

For example, if you wish to change the maximum sibship size, but do not want to re-run parentage assignment:
ParOUT$Specs$MaxSibshipSize <- 150
SeqOUTX <- sequoia(GenoM = Geno,

SeqList = ParOUT[c("Specs", "PedigreePar", "LifeHist")],
Module = "ped")

6 Running sequoia()
6.1 Module (MaxSibIter)
Most datasets initially contain imperfections. Pedigree reconstruction can be a useful tool in quality control,
to find outliers with many Mendelian errors among e.g. known mother–offspring pairs (sample mislabeling?)
or among SNPs (poor quality SNPs to be excluded).

To speed up iterative quality control, it is possible to run sequoia() only up to a certain point, use the
output thus far to, as necessary, exclude SNPs, exclude/relabel samples, or adjust input parameters, and
re-run again from the start or resume from the last point.

There are three possible intermediate stopping points, plus the final end point, each named after the last
‘Module’ that is run:

22

1. 'pre': Input check
check that the genotype data, life history data and input parameters are in a valid format, create
'Specs' element of output list

2. 'dup': check for duplicates
Check for (nearly) identical genotypes, and for duplicated IDs in the genotype and life history data

3. 'par': parentage assignment
Assign genotyped parents to genotyped individuals. Includes call to MakeAgePrior() to estimate
AgePriors based on the just-assigned parents.

4. 'ped': full pedigree reconstruction
Cluster half- and full-siblings and assign each cluster a dummy-parent; assign grandparents to sibships
and singletons.

6.1.1 MaxSibIter

Up to sequoia version 2.0, MaxSibIter was used to switch between these options, with numeric values

• −9 only input check

• −1 also check for duplicates

• 0 also do parentage assignment

• x > 0 also do at most x iterations of full pedigree reconstruction

The maximum number of iterations was always only intended as a safety net in case the total likelihood
did not stabilise, but this has not been an issue since sequoia version 1.0 (as far as I am aware). Even for
large, complex datasets (several thousand individuals with considerable close inbreeding) the total likelihood
plateaus in 10–15 iterations. From version 2.1 onward, MaxSibIter= 42; if this number of iterations is
reached it is a strong sign of problems with the data, e.g. that the SNPs are not informative enough to
reconstruct the pedigree.

6.2 Input check
SNP datasets are typically too large to easily spot any problems by simply looking at the data in a
spreadsheet. There are many tools available to deal with genotype data and do proper quality control; the
function CheckGeno() merely checks that the data are in the correct format for sequoia, and that there are
no SNPs or individuals with excessively many missing values.

The function SnpStats() can be used to count the number of Mendelian errors per SNP. It is not automatically
called by sequoia(), but excluding SNPs with exceptionally high genotyping error rates is recommended to
improve accuracy of the inferred pedigree.

6.3 Check for duplicates
The data may contain positive controls, as well as other intentional and unintentional duplicated samples,
with or without life-history information. sequoia() searches the data for (near) identical genotypes, allowing
for MaxMismatchDUP mismatches between the genotypes, which may or may not have the same individual ID.
The threshold value depends on the presumed genotyping error rate, allele frequencies and number of SNPs,
and is calculated by CalcMaxMismatch().

Not all pairs flagged as potential duplicate genotypes are necessarily actual duplicates: inbred individuals
may be nearly indistinguishable from their parent(s), especially when the number of SNPs is limited.

This check will also return a vector of individuals included in the genotype data, but not in the life history
data (NoLH). This is merely a service to the user; individuals without life history information can often be
successfully included in the pedigree.

23

6.4 Parentage assignment
The number of pairs to be checked if they are parent and offspring is very large for even moderate numbers of
individuals, e.g. 5,000 pairs for 100 individuals, and 2 million for 2,000 individuals. To speed up computation,
three ‘sieves’ are applied sequentially to find candidate parent-offspring pairs, with decreasing ‘mesh size’

• The number of SNPs at which the pair are opposing homozygotes must be less than MaxMismatchOH;
• The log10-likelihood ratio (LLR) between being parent and offspring versus unrelated, not conditioning

on any already assigned parents, must be equal to or greater than Tfilter;
• The LLR between the pair being parent and offspring versus being otherwise related, calculated

conditional on all already assigned relatives, must be equal to or greater than Tassign. This step filters
out siblings, grandparents and aunts/uncles.

The older of the pair is assigned as parent of the younger. If it is unclear which is the older, or if it is unclear
whether the parent is the mother or the father, no assignment is made, but these pairs can be found with
GetMaybeRel() (see section Likely relatives). If there are multiple candidate parents of one or both (or
unknown) sex(es), the parent pair or single parent resulting in the highest likelihood is assigned.

The heuristic sequential filtering approach makes parentage assignment quick, and usually takes only a few
minutes, especially when setting CalcLLR=FALSE (do not re-calculate LLR parent-offspring vs next-most-likely
relationship for all assigned parents, based on the final pedigree).

6.5 AgePrior
The assigned parents are used to update the ageprior, before returning the results to the user of continuing
with full pedigree reconstruction. Any arguments to MakeAgePrior() can be passed via args.AP. For example,
you can specify the maximum age of dams and sires:
SeqOUT.B <- sequoia(GenoM = SimGeno_example, Err = 0.005,

LifeHistData = LH_HSg5, Module="par", Plot=FALSE, quiet=TRUE,
args.AP = list(MaxAgeParent = c(3,2), Smooth=FALSE))

PlotAgePrior(SeqOUT.B$AgePriors)

0

1

2

3

4

A
ge

 d
iff

er
en

ce
 (

A
)

M P FS MS PS

Relationship (R)

0
0.001
0.02
0.05
0.1
0.2
0.25
0.333
0.5
1
2
3
4
5
10
20
50

P(A|R)/P(A)

This way, even if sampled parents are all age 1, siblings sharing an unsampled parent may still have an age
difference of 1 or 2 years, and grandparent – grand-offspring pairs may have an age difference of 2-6 years.

6.6 Full reconstruction
During full pedigree reconstruction, assignment of all first and second degree links between all individuals is
attempted, using the following steps within each iteration

24

• Find pairs of likely full- and half-siblings, using filtering steps with decreasing ‘mesh size’ similar to
parentage assignment

• Cluster potential sibling pairs into sibships
• Find and assign grandparent – grand-offspring pairs (iteration 3+)
• Merge existing sibships
• Replace dummy parents by genotyped individuals
• For individuals without parent(s), find candidate real and dummy parents, and assign parent(-pairs)
• For sibships without grandparent(s), find candidate real and dummy grandparents, and assign

grandparent(-pairs) (iteration 2+)

The order of these steps, and the skipping of some steps in the first iteration(s), has been established by trial
& error to minimise false positive assignments while maximising correct assignments across a wide range of
datasets. When running sequoia(), you can keep track of the progress through the various steps by setting
quiet = 'verbose'.

Full pedigree reconstruction may take from a few seconds to several hours, depending on the number of
individuals without an already assigned parent, the proportion of individuals with unknown sex or birth year,
the number of sibships that is being clustered and their degree of interconnection, and the number of SNPs
and their error rate. Generally computation is faster if the data is more complete and more accurate.

6.6.1 Dummy Individuals

The ‘dummy’ parent assigned to each cluster of half-siblings is denoted by a 4-digit number with prefix F
for females (F0001, F0002, . . .) and M for males (M0001, M0002, . . .). In the output, dummy individuals
are appended at the bottom of the pedigree with their assigned parents, i.e. the sibship’s grandparents. In
addition, all information for each dummy individual is given in dataframe DummyIDs, including its parents
(again), its offspring, and the estimated birth year, as a point estimate (BY.est) and lower and upper bound
of the 95% probability interval. This information is intended to make it easier to match dummy IDs to real
IDs of observed but non-genotyped individuals (see also Compare pedigrees).

6.6.2 Total likelihood

The total likelihood provides a measure of how well the observed genotype data is explained by the currently
inferred pedigree, the allele frequencies of the SNPs, the presumed genotyping error rate, and the assumption
that founder genotypes were drawn from a genepool in Hardy-Weinberg equilibrium. It is always a negative
number, and closer to zero indicates a better fit. When an asymptote is reached, typically in 5–10 iterations,
either the algorithm is concluded (the default) or dependency on the age prior is increased (if UseAge =
'extra') and the algorithm continues until a new asymptote is reached.

6.7 Save output
There are various ways in which the output can be stored. This includes saving the seqoia list object, and
optionally various other objects, in an .RData compressed file
save(SeqList, LHdata, Geno, file="Sequoia_output_date.RData")

which can be read back into R at a later point
load("Sequoia_output_date.RData")
'SeqList' and 'LHdata' will appear in R environment

The advantage is that all data is stored and can easily be manipulated when recalled. The disadvantage is
that the file is not human-readable, and (to my knowledge) can only be opened by R.

Alternatively, the various dataframes and list elements can each be written to a text file in a designated
folder. This can be done using write.table or write.csv, or using the wrapper writeSeq():

25

writeSeq(SeqList, GenoM = Geno, folder=paste("Sequoia_OUT", Sys.Date()))

The same function can also write the dataframes and list elements to an excel file (.xls or .xlsx), each to a
separate sheet, using package xlsx:
writeSeq(SeqList, OutFormat="xls", file="Sequoia_OUT.xlsx")

Note that ‘GenoM’ is ignored, as a very large genotype matrix may result in a file that is too large for excel
to open. If you have a genotype matrix of modest size, you can add it to the same excel file; see the example
in ?writeSeq.
library(xlsx)
write.xlsx(Geno, file = "Sequoia_OUT.xlsx", sheetName="Genotypes",

col.names=FALSE, row.names=TRUE, append=TRUE, showNA=FALSE)

The option append=TRUE ensures that the sheet is appended to the file, rather than the file entirely overwritten.

7 Output check
7.1 Pedigree stats & plots
Various summary statistics can be calculated and displayed using SummarySeq(), such as the number and
kind of assigned parents (Figure 6), family sizes (Figure 7), and the distributions of Mendelian errors. Its
output also includes a table analogous to pedigreeStats by R package pedantics (which was archived on
CRAN in December 2019).

Figure 6: Number of parents assigned to genotyped individuals, split by category

There is a range of software available to plot pedigrees in various styles, such as R package kinship2 or the
program PedigreeViewer. Be aware that many use a different column order (id - sire - dam, rather than id
- dam - sire), use 0 to denote missing parents rather than NA, and/or do not allow individuals to have a

26

Figure 7: Family sizes, split by genotyped (dark) or dummy (light) parent

single parent (they must have 0 or 2 parents). The last two issues can be resolved with Sequoia’s function
PedPolish().

7.1.1 Negative LLR’s

The parent LLR’s are calculated based on genetic data only, without any consideration of age. Consequently,
they are often close to zero for dummy – dummy parent-offspring pairs, as genetically the parent may just as
well be the offspring. Such pairs will not have been assigned unless there is a compatible co-parent (LLRpair
should always be positive) or if there is overwhelming age-based evidence to decide which one is the parent.

When a parental LLR is negative without an accompanying co-parent, or when LLRpair is negative, this is
reason to cautious about the assignment and for example compare it to a previous pedigree or inspect the
genomic relatedness. In contrast to MCMC type approaches, sequoia’s algorithm has limited scope to undo
previously made assignments, and may get stuck at suboptimal solutions.

Extremely negative LLRs (< −100) are typically caused by one or more of the alternative relationships
considered, now conditional on the rest of the pedigree, being very convoluted and neither being caught as
‘highly improbable and not implemented’ nor being implemented properly (see Table weird relationships for
double relationships that are implemented). In the unlikely event that the parent-offspring relationship itself
is not implemented properly you will see an error value of 444 or 777.

7.1.2 Dyad plot

Per popular request, from version 2.1 sequoia includes PlotRelPairs() to produce pairwise plots, similar to
Colony’s plot of half- and full-sibling dyads. It plots the output from GetRelM(), where you can specify if
you want to trace each individual’s pedigree 1 generation back (as in Figure 8) or 2 (include grandparents
& aunts/uncles), and whether or not you want to differentiate between paternal and maternal relatives. It
includes some basic functionality to subset individuals.

27

i0
54

_2
00

3_
F

i0
41

_2
00

3_
F

i0
51

_2
00

3_
F

i0
50

_2
00

3_
M

i0
52

_2
00

3_
F

i0
48

_2
00

3_
F

i0
56

_2
00

3_
M

i0
43

_2
00

3_
M

i0
30

_2
00

2_
F

i0
21

_2
00

2_
M

i0
49

_2
00

3_
M

i0
28

_2
00

2_
M

i0
23

_2
00

2_
F

i0
45

_2
00

3_
F

i0
44

_2
00

3_
F

i0
34

_2
00

2_
F

i0
55

_2
00

3_
M

i0
59

_2
00

3_
M

i0
24

_2
00

2_
M

i0
33

_2
00

2_
F

i0
25

_2
00

2_
M

i0
22

_2
00

2_
F

i0
42

_2
00

3_
F

i0
35

_2
00

2_
F

i0
47

_2
00

3_
F

i0
53

_2
00

3_
M

i0
57

_2
00

3_
M

i0
32

_2
00

2_
F

i0
46

_2
00

3_
M

i054_2003_F

i052_2003_F

i056_2003_M

i030_2002_F

i049_2003_M

i023_2002_F

i034_2002_F

i024_2002_M

i025_2002_M

i042_2003_F

i053_2003_M

i001_2001_F

i004_2001_F

i006_2001_M

i008_2001_M

i011_2001_F

i013_2001_F

i015_2001_F

i018_2001_M

i020_2001_M

i027_2002_F

i038_2002_F

dam
(27)

sire
(23)

full sib
(1)

mat. half sib
(12)

pat. half sib
(14)

self
(29)

Figure 8: Example plot from PlotRelPairs()

7.2 Compare pedigrees
Often a (part) pedigree is already available to which one wants to compare the newly inferred pedigree,
for example to field-observed mothers or a microsatellite-based pedigree. PedCompare() compares for
each individual the assigned parents between the two pedigrees (match/mismatch), while ComparePairs()
compares for each pair their relationship between the two pedigrees (e.g. full sibs vs half sibs). Both pedigrees
may have genotyped as well as non-genotyped individuals.

Most of the terminology in this vignette and the helpfiles is based on Ped1 being the ‘true’ pedigree (the
one from which data is simulated) and Ped2 is the inferred pedigree (from the simulated data), but both
functions work for any two pedigrees. From version 2.0 onwards you can indicate in PedCompare() that both
pedigrees may be imperfect (Symmetrical = TRUE).

7.2.1 Dummy matching

Comparing two pedigrees becomes complicated when dummy IDs are involved – When are non-identical
parental IDs between the two pedigrees actually referring to the same individual? For example, in Table
8 the mother of Blossom and Bob is Beta in Pedigree1, and dummy female F0007 in Pedigree 2. It seems
fair to assume that F0007 thus refers to the non-genotyped female Beta. And since Alpha was assigned as
maternal grandmother to Blossom and Bob, we can also conclude that Alpha must be the mother of Beta!

28

Table 8: Example comparison between Pedigree1 (left) and Pedigree2 (right)

id dam sire
Alpha
Beta
Abigail Alpha Zorro
Aster Alpha Yann
Blossom Beta
Bob Beta Zorro
-

id dam sire
Alpha
-
Abigail Alpha Zorro
Aster Alpha M0004
Blossom F0007
Bob F0007 Zorro
F0007 Alpha

Matching and replacing dummy IDs this way extends the number of individuals with both pedigree and
phenotypic data, which will among others increase power of any downstream quantitative genetic analyses.

More specifically, PedCompare() considers it a ‘match’ if the inferred sibship (in Pedigree2) which contains
the most offspring of a non-genotyped parent (in Pedigree1), consists for more than half of this individual’s
offspring. If for example a cluster of 5 siblings in Pedigree1 is split into two clusters in Pedigree2, the larger
sibship (of say 3 individuals) is considered a match, and the smaller a mismatch (thus 2 mismatches) —
even though it could be argued the inferred Pedigree2 does not contain any incorrect links. For this same
example, ComparePairs() would tell that the (5 ∗ 4)/2 = 10 halfsib pairs in Pedigree1 are 3 + 1 halfsib pairs
in Pedigree2, and 6 unrelated pairs. ComparePairs() does not attempt any matching of dummy individuals.

7.2.2 Example

PCG <- PedCompare(Ped1 = cbind(FieldMums_griffin,
sire = NA),

Ped2 = SeqOUT_griffin$Pedigree)

2
150

11

77

Match
Mismatch

Ped1 only
Ped2 only

TT
 dam+sire

0
0

4
61

0
79

0 18
7

16
0
20

012 017

04 0

dam sire

GG

GD

DG

DD

pedigrees side-by-side (subset of columns because no field-observed sires here)
PCG$MergedPed[127:133, c("id", "dam.1", "dam.2", "dam.r", "id.dam.cat", "dam.class")]

id dam.1 dam.2 dam.r id.dam.cat dam.class
127 i165_2009_F PinkBlue F0002 PinkBlue GD Match

29

128 i166_2009_F PinkBlue F0002 PinkBlue GD Match
129 i169_2009_M i133_2007_F i133_2007_F <NA> GG Match
130 i170_2009_F BlueRed F0001 BlueRed GD Match
131 i171_2009_M <NA> F0013 nomatch GD P2only
132 i173_2009_F BlueRed F0001 BlueRed GD Match
133 i174_2009_F <NA> F0012 nomatch GD P2only
Non-genotyped field mums have a two-colour code (e.g. 'BlueRed')

PCG$MergedPed[c(137,138, 6, 128,129,7), c("id", "id.r", "dam.1", "dam.2", "dam.r")]

id id.r dam.1 dam.2 dam.r
137 i179_2009_M i179_2009_M YellowPink F0007 YellowPink
138 i181_2010_F i181_2010_F <NA> F0015 nomatch
6 F0006 RedOrange <NA> <NA> <NA>
128 i166_2009_F i166_2009_F PinkBlue F0002 PinkBlue
129 i169_2009_M i169_2009_M i133_2007_F i133_2007_F <NA>
7 F0007 YellowPink <NA> <NA> <NA>
column 'id': ids common to both pedigrees, plus those only in Pedigree2
column 'id.r': 'consensus' ids, plus those only occurring in Pedigree1

dummy individuals from Ped2 with their best-matching non-genotyped individual in Ped1
head(PCG$DummyMatch[, -c(3:5)])

id.2 id.1 off.Match off.Mismatch off.P1only off.P2only
1 F0001 BlueRed 4 4 0 3
2 F0002 PinkBlue 3 0 0 0
3 F0003 GreenYellow 3 2 0 0
4 F0004 nomatch 0 0 0 2
5 F0005 nomatch 0 2 0 0
6 F0006 RedOrange 3 0 0 0
'nomatch' in the `id.1` column: none of the siblings in Ped2 had a field-observed
mother, or there is a mismatch.

Total number of matches & mismatches:
PCG$Counts

, , parent = dam
##
class
cat Total Match Mismatch P1only P2only
GG 65 61 4 0 0
GD 41 16 7 0 18
GT 107 77 11 1 18
DG 12 0 0 0 12
DD 4 0 0 0 4
DT 16 0 0 0 16
TT 124 77 11 2 34
##
, , parent = sire
##
class
cat Total Match Mismatch P1only P2only
GG 79 0 0 0 79

30

GD 20 0 0 0 20
GT 99 0 0 0 99
DG 17 0 0 0 17
DD 0 0 0 0 0
DT 17 0 0 0 17
TT 116 0 0 0 116
dim1: category: genotyped/dummy/total
dim2: classification: total (could-have-had-parent)/ match/ mismatch/
P1only (no parent in Ped2)/ P2only
dim3: dam/sire

See here for a detailed walk-through of this example, and suggestions on how to trace the underlying cause of
discrepancies between the newly-inferred genetic pedigree and an existing field pedigree.

In short, the main aim of checking the discrepancies is to figure out the underlying cause of each case:

• pedigree reconstruction error,
• wet lab error (sample swap/mislabeling), or
• field ‘error’ (e.g. mistaken/unknown identity),

so that the records and/or pedigree can be corrected. PedCompare() only points you to where the discrepancies
are; field records, lab records and common sense are needed to determine the most likely cause (or determine
that the cause is unknowable).

Fairly common (but still rare) pedigree reconstruction errors are

• one sibship is erroneously split into two,
• two sibships are erroneously merged into one,
• an aunt/uncle is assigned as sibship-grandparent,
• the parent-offspring relationship between to dummy individuals, or between two genotyped individuals

with unknown birth years, is flipped the wrong way around.
~~ Mismatches ~~
PCG$MergedPed[which(PCG$MergedPed$dam.class == "Mismatch"),

c("id", "dam.1", "dam.2", "id.dam.cat")]

id dam.1 dam.2 id.dam.cat
87 i108_2006_F GreenBlue i081_2005_F GG
98 i122_2007_M GreenBlue i081_2005_F GG
99 i123_2007_F OrangeGreen F0001 GD
100 i124_2007_M GreenBlue i081_2005_F GG
104 i130_2007_F OrangeGreen F0001 GD
105 i131_2007_F OrangeGreen F0001 GD
107 i133_2007_F OrangeGreen F0001 GD
112 i142_2008_M GreenBlue i081_2005_F GG
116 i147_2008_F YellowBlue F0003 GD
117 i148_2008_F GreenYellow F0005 GD
124 i159_2008_F YellowBlue F0005 GD
PedM <- PCG$MergedPed[, c("id", "dam.1", "dam.2")] # short-hand to minimise typing

who are the mismatching individual's siblings according to Ped1 & Ped2?
PedM[which(PedM$dam.1 == "GreenBlue"),]

id dam.1 dam.2
87 i108_2006_F GreenBlue i081_2005_F
98 i122_2007_M GreenBlue i081_2005_F
100 i124_2007_M GreenBlue i081_2005_F

31

https://CRAN.R-project.org/package=sequoia/vignettes/PedComp.html

112 i142_2008_M GreenBlue i081_2005_F
PedM[which(PedM$dam.2 == "i081_2005_F"),]

id dam.1 dam.2
87 i108_2006_F GreenBlue i081_2005_F
98 i122_2007_M GreenBlue i081_2005_F
100 i124_2007_M GreenBlue i081_2005_F
112 i142_2008_M GreenBlue i081_2005_F
who are their maternal grandparents?
PedM[which(PedM$id.1 == "GreenBlue"),]

[1] id dam.1 dam.2
<0 rows> (or 0-length row.names)
PedM[which(PedM$id.2 == "i081_2005_F"),]

[1] id dam.1 dam.2
<0 rows> (or 0-length row.names)

7.2.3 Colony

To compare Colony output with an existing pedigree, use:
BestConfig <- read.table("Colony/file/file.BestConfig",

header=T, sep="", comment.char="")
PC <- PedCompare(Ped1 = ExistingPedigree,

Ped2 = BestConfig)

7.3 Relatedness
7.3.1 Pedigree relatedness

Another way to compare two pedigrees is to compare the pedigree-based relatednesses calculated from each.
In R, pedigree relatedness can for example be calculated by the R package kinship2 – relatedness is defined
as twice the kinship coefficient.

kinship2 requires a pedigree with columns id - dadid - momid - sex, and requires that individuals either
have two parents, or zero. The latter can be achieved with sequoia::PedPolish(, FillParents=TRUE).
From sequoia version 2.1, CalcRPed() will reformat the pedigree, call kinship2::kinship(), and return
relatedness coefficients as a matrix or dataframe.

The same can be done for a second pedigree, and the two dataframes merged. As the number of pairs p
becomes very large even for moderate numbers of individuals n (p = n × (n − 1)/2, so e.g. 2 million pairs
for 2 thousand individuals), it is a good idea to use package data.table to assist with merging (merge in
seconds vs. many minutes or not at all):
Rped.old <- CalcRped(Ped_griffin, OUT="DF")
Rped.new <- CalcRped(SeqOUT_griffin$Pedigree, OUT="DF")
library(data.table)
Rped.both <- merge(data.table(Rped.old, key=c("IID1", "IID2")),

data.table(Rped.new, key=c("IID1", "IID2")),
all=TRUE, suffixes=c(".old", ".new"))

cor(Rped.both$R.ped.new, Rped.both$R.ped.old, use="pairwise.complete")

[1] 0.9317796

32

plot(Rped.both$R.ped.old, Rped.both$R.ped.new, pch=16, cex=0.3,
xlab = 'R (old ped)', ylab = 'R (new ped)')

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
4

0.
8

1.
2

R (old ped)

R
 (

ne
w

 p
ed

)

7.3.2 Genomic relatedness

In absence of a previous pedigree, or when it is not obvious whether the previous or newly inferred pedigree is
correct, one could compare the pairwise relatedness estimated from the pedigree(s) to a measure of genomic
relatedness, estimated directly from the complete SNP data – which may be many more SNPs than used for
pedigree reconstruction. Genomic relatedness can be estimated for example using GCTA. Genomic relatedness
will vary around the pedigree-based relatedness even for a perfect pedigree due to Mendelian variance, but
outliers suggest pedigree errors.

For example:
read in output from GCTA
Rel.snp <- read.table("GT.grm.gz")
Rel.id <- read.table("GT.grm.id", stringsAsFactors=FALSE)
Rel.snp[,1] <- as.character(factor(Rel.snp[,1], labels=Rel.id[,2]))
Rel.snp[,2] <- as.character(factor(Rel.snp[,2], labels=Rel.id[,2]))
names(Rel.snp) <- c("IID1", "IID2", "nSNPS", "R.GRM")
Rel.snp <- Rel.snp[Rel.snp$IID1 != Rel.snp$IID2,] # between-indiv only
#
combine with pedigree relatedness
Rel.both <- merge(data.table(Rel.snp[,c(1,2,4)], key=c("IID1", "IID2")),

data.table(Rped.both, key=c("IID1", "IID2")), all.x=TRUE)
Rel.both <- as.data.frame(Rel.both) # turn back into regular dataframe
rm(Rel.snp, Rped.both, Rped.new, Rped.old) # clean up: remove large dataframes
#
round(cor(Rel.both[, c("R.GRM","R.ped.new", "R.ped.old")],

use="pairwise.complete"), 3)
#
scatterplot doesn't work well with many thousand points
>> use heatmap-like alternative, e.g. hexbinplot
hexbin::hexbinplot(Rel.both$R.GRM ~ Rel.both$R.ped.new,

xbins=100, aspect=1,

33

https://yanglab.westlake.edu.cn/software/gcta/#MakingaGRM

xlim=c(-.05,.9), ylim=c(-.2, .9),
xlab="Pedigree relatedness", ylab="Genomic relatedness",
trans=log10, inv=function(x) 10ˆx,
colorcut=seq(0,1,length=14), maxcnt=10ˆ6.5,
colramp = function(n) {grDevices::hcl.colors(n, palette='Berlin')})

#
if you want to add e.g. a diagonal line to that plot:
hb <- hexbin::hexbin(Rel.both$R.GRM ~ Rel.both$R.ped.new,

xbins=100, xbnds=c(-.05, .9), ybnds=c(-.2, .9),
xlab="Pedigree relatedness", ylab="Genomic relatedness")

hbp <- hexbin::plot(hb,
trans=log10, inv=function(x) 10ˆx,
colorcut=seq(0,1,length=14), maxcnt=10ˆ6.5,
colramp = function(n) {grDevices::hcl.colors(n, palette='Berlin')}

)
hexbin::hexVP.abline(hbp$plot.vp, a=0, b=1)

knitr::include_graphics("hexbin.png")

0 0.2 0.4 0.6 0.8

−0.2

0

0.2

0.4

0.6

0.8

Pedigree relatedness

G
en

om
ic

 r
el

at
ed

ne
ss

1

3

10

32

100

316

1000

3162

10000

31623

1e+05

316228

1e+06

3162278

Counts

Figure 9: Relatedness hexbinplot example

7.4 Cluster families
Certain analyses, such as the Mendelian error check in PLINK, are done on a family-by-family basis.
FindFamilies() takes a pedigree as input and clusters the individuals in as few families as possible, by
repeatedly searching all ancestors and all descendants of each individual and ensuring those all have the same

34

family ID.

This function does not take separate FID and IID columns in the input pedigree, rather these need to
be joined together before running FindFamilies() (e.g. with paste()), and then split afterwards using
PedStripFID().

8 Hermaphrodites
Hermaphrodites have been re-implemented in versions 2.2 and 2.3, and now also full pedigree reconstruction
should work as expected. Selfing is fully supported, also when a selfing parent or its selfed offspring are
non-genotyped, and the aim is to infer their genotyped relatives.

With hermaphrodites it is not self-evident whether an identified parent should be assigned as dam or as sire.
Sex-linked markers are not implemented in sequoia, and sequential hermaphroditism (male until age t, and
female after, or v.v.) is not the norm.

Two alternative approaches are available, by specifying parameter Herm='A' or Herm='B'.

8.1 Herm ‘A’: Pedigree prior
A genetically identified parent will be assigned when it matches a candidate parent, or when it forms a
complementary parent-pair with such an assigned parent. The candidate dam may e.g. be the plant from
which the seed was collected. Candidate parent–offspring pairs that are not a genetic match will never be
assigned, non-genotyped candidate parents are ignored.

In absence of a pedigree prior, only instances of selfing will be assigned.

The pedigree ‘prior’ can only be used during parentage assignment, by specifying SeqList[["PedigreePar"]]
as input and setting Module='par':
cand.dams <- read.table("Candidate_dams.txt", header=TRUE,

stringsAsFactors=FALSE)
cand.dam has columns 'id' and 'dam', and does not need entries for all ids
cand.par <- cbind(cand.dams, sire=NA)

par.herm <- sequoia(GenoM = Geno,
LifeHistData = LH,
SeqList = list(PedigreePar = cand.par),
Module='par')

re-use all settings (including the newly assigned parents):
seq.herm <- sequoia(GenoM = Geno,

LifeHistData = LH,
SeqList = par.herm,
Module='ped')

8.2 Herm ‘B’: Ignore sex role
Often it is irrelevant whether the parent was the maternal or paternal parent, and with this setting single
parents are assigned as dams, and in parent-pairs dam vs sire is determined by their order in the genotype
file.

8.3 Hermaphrodite dummies
Whether half-siblings share a dummy dam or a dummy sire is arbitrary. If one or more individuals in a
sibship are the product of selfing, the maternal and paternal halves will be linked, and additional half-siblings

35

will be arbitrarily assigned to either half. Dummy individuals which occur as both dam and sire get dummy
prefix 'H', an alternative 3rd DummyPrefix can be specified in (most?) relevant functions.

In SeqList[["DummyIDs"]], the offspring-as-dam and offspring-as-sire are shown separately, with the same
id (‘H0xxx’) and Sex=1 vs Sex=2 respectively. Selfed offspring will occur in both rows. Estimated birth
years and other aspects may differ somewhat between the maternal and paternal halves, as during pedigree
reconstruction they are (currently?) only linked in some aspects but not others.

8.4 Assignment errors
PedCompare() is not useful in combination with Herm='B', as any dam assigned as sire and v.v. will show
up as error. Use instead ComparePairs(, patmat=FALSE), which will also pick up half-siblings for which
the mother of i is the father of j.

One type of assignment error is unavoidable: if the true parent is unsampled and the product of selfing, a
sampled grandparent will be indistinguishable from a parent. Similarly, when the true parent is sampled, but
both the parent and the grandparent are the product of selfing, they are genetically nearly identical and
often erroneously interchanged when birth year information is absent.

Figure 10: Two configurations with identical likelihoods

9 FAQ
9.1 Error about/due to input data
For smaller datasets (say up to 1000 individuals) it may be useful to read in the data with read.table()
(using header=TRUE or FALSE, as appropriate, and typically row.names=1), and inspect the data with
table(as.matrix(mydata)) for odd entries that weren’t caught by CheckGeno() to give an informative
error message. For very large datasets, specialist tools may be required to get the data in a standardised
format.

9.2 Low assignment rate
See also key points.

In many cases, assignment rate can be boosted without increasing the number of SNPs: by assuming a
different genotyping error rate, providing sex or birth year information on more individuals, or fine-tuning
the ageprior. Sometimes reducing the number of SNPs may increase assignment rate, by removing those with
the highest error rate and/or SNPs in close LD.

9.2.1 Not enough SNPs

As opposed to most other pedigree assignment programs, Sequoia does not rely on MCMC to explore many
different pedigree possibilities, but instead sequentially assigns highly likely relationships, and expands the
pedigree step by step. For a relationship to be highly likely, a substantial number of SNPs is necessary,
larger than for MCMC methods: at least 100-200 for parentage assignment, or full sibling clustering in a
monogamous population, and about 400-500 otherwise. More is not always better: with tens of thousands of
SNPs many will unavoidably be in high LD (unless you work on a species with a very large genome and very

36

high Ne), and the signal will get lost in the noise. Using more than 1000 SNPs is never necessary, and for a
typical vertebrate genome there is little benefit of using more than 500 good SNPs.

This unfortunately also means that sequoia is unsuitable for species with a very small genome.

9.2.2 Genotyping errors

A few SNPs with a high (apparent) error rate may throw off pedigree reconstruction if their erroneous
signal is not sufficiently offset by a large number of more accurate SNPs. Such SNPs can be identified with
SnpStats(), using an existing pedigree or one from an preliminary round of parentage assignment. If there
are clear outliers with regards to estimated error rate, it may be worth exploring pedigree reconstruction
without these SNPs.

9.2.3 Lacking sex information

Currently Sequoia cannot handle sex-linked markers, and therefore cannot distinguish between maternal
versus paternal relatives. Sometimes the sex of an individual can be inferred, if it forms a complementary
parent-pair with an individual of known sex. This is also the manner in which the sex of dummy parents is
determined; half-sibships sharing a parent of unknown sex are not currently implemented.

Pairs of relatives for which it is unclear whether they are maternal or paternal relatives, can be identified
with GetMaybeRel().

9.2.4 Insufficient age information

A parent will only be assigned if it is known to be older than the individual with which it genetically forms
a parent–offspring pair, or if a complementary co-parent is identified. Purely genetically, it is impossible
to tell who is the parent in a parent–offspring pair. But once an individual has been assigned parents, any
remaining individuals with which it forms a parent-offspring pair must be its offspring, and will be assigned
as such. Thus, a high proportion of sampled parents may somewhat compensate for unknown birth years.

Providing minimum and maximum possible birth years can substantially increase assignment rate. The risk
is that when intervals are taken too narrowly, parent–offspring pairs are flipped the wrong way around, which
in turn may lead to other wrong assignments. This may especially be a problem in long-lived species which
start breeding at an early age.

Age information will also help to distinguish between the three different types of second degree relatives (half
siblings, grandparent – grand-offspring and full avuncular (aunt/uncle – niece/nephew). These are genetically
indistinguishable, unless both individuals of the pair already have a parent assigned. In most species, there is
limited overlap between the age-difference of half siblings versus grandparents, and only partial overlap of
either with the age distribution of avuncular relationships.

9.2.5 Uninformative age prior

The ageprior used for full pedigree reconstruction is estimated from the birth year differences of parent-
offspring pairs assigned during the initial parentage assignment. When only few parents are assigned, or when
many birth years are unknown, this ageprior may not be very informative. If a large pedigree is available
from the same or a similar population (e.g. based on observations and microsatellite paternity assignments),
it can be useful to estimate the agepriors from that pedigree. For details, see the age vignette

9.2.6 Mating system

When the population has a complex mating system, with overlapping generations and many double relatives,
a large number of SNPs is needed to distinguish between various plausible alternatives. When the power of
the SNP panel is insufficient to make the distinction, no assignment will be made.

When inbreeding and complex relationships (e.g. paternal half-sibling as well as maternal half-aunt) are
rare, ignoring these typically increases assignment rate (Complex="simp"). Similarly, when polygamy is rare

37

and not of particular interest, assuming a monogamous mating system typically increases assignment rate
(Complex="mono"). However, these choices will risk erroneous assignments when complex relationships or
polygamy, respectively, do occur.

9.3 Death year
The year of death forms an upper limit to when an individual could have reproduced, and can from version
2.5 onwards be used as input via the Year.last column in LifeHistData. Note that for many species, the
last possible year in which offspring can be born may be after the year of death (e.g. males in many mammal
species), or the year preceding the year of death (if a individual died between January 1st and the breeding
season).

If it is unclear whether an individual died or emigrated, please do not provide a Year.last – emigrants can
still be candidate parents, as they may reside just outside the study area boundaries, or return briefly and
unseen during the breeding season. is unknown.

9.4 Accuracy
The real, true pedigree is normally unknown, but there are a few ways to infer the accuracy of specific
pedigree links, or to estimate the average accuracy of assignments.

9.4.1 Field pedigree

If the genetically assigned mother matches the mother caring for the individual, or the plant from which the
seed was collected, there is little reason to doubt the assignment. Similarly, when the genetically assigned
father matches (one of) the observed mates of the mother, the assignment is most likely correct.

In rare other cases, the genetically assigned parent is impossible, for example because the assigned parent
was not alive at the time of birth (for mothers) or conception (for fathers). The blame for such an erroneous
assignment may be the pedigree reconstruction software (due to genotyping errors, or a bug in the code), but
may also be due to sample mislabelling in the lab, or a case of mistaken identity in the field.

Tracking down the underlying cause of discrepancies between the field and genetic pedigree will be time
consuming, but can be a valuable part of data quality control.

9.4.2 Genomic relatedness

When many thousands of SNPs are typed, it is possible to calculate the genomic relatedness (Rgrm) between
all pairs of individuals (see Relatedness). Due to the random nature of Mendelian inheritance there is always
considerable scatter of genomic relatedness around pedigree relatedness, but when the pedigree relatedness
is considerably higher (say Rped − Rgrm > 0.2), this is often indicative of a pedigree error. Note however
that most estimators of Rgrm assume a large, panmictic, non-inbred population, and deviations from these
assumptions may contribute to differences between Rped and Rgrm.

9.4.3 Data simulation

Simulations as performed by ‘EstConf()’ do not tell which assignments may be incorrect, but do give an
estimate of the overall number of incorrect assignments. The simulations are done presuming the inferred
pedigree (or an existing pedigree) is the true pedigree, i.e. for a pedigree that is (hopefully) very close to the
actual true pedigree. It relies on several simplifying assumptions, and will therefore always be an optimistic
estimate of the actual accuracy.

9.5 Add new individuals
When new individuals have been genotyped, such as a new cohort of offspring, it is best to re-run the
pedigree reconstruction for all genotyped individuals. This ensures that older siblings of the new offspring
are identified, as well as any grandparents. A possible exception is when all candidate parents have been

38

genotyped, although even then inclusion of their parents (the new individuals’ grandparents) may correct for
any genotyping errors they may have.

9.6 Results differ from COLONY
Sequoia will typically produce a more conservative pedigree than COLONY, for various reasons:

• COLONY only considers whether individuals are full siblings, half siblings, or unrelated, while sequoia
also considers full- or half- avuncular (aunts and uncles and their nieces and nephews), and grand-
parental. These alternative relationships are impossible among individuals born in the same year when
generations do not overlap (args.AP=list(Discrete=TRUE)). If all samples are from a single birth
year, this is automatically assumed.

• sequoia also considers double relationships, e.g. paternal half-siblings that are also maternal half-
cousins, with a relatedness inbetween full and half siblings. These may be erroneously assigned as full
siblings by COLONY when present, but their consideration may cause true full siblings to be only
assigned as half-siblings, especially when there is only a moderate amount of genetic data. To ignore
double and inbred relationships, use Complex='simp'.

• sequoia considers third degree relationships, such as full cousins. Again, these may result in false
positives by COLONY, while their consideration may result in false negatives by sequoia. This can
not be turned off.

• When no parents of known sex can be assigned, there is no way in sequoia to differentiate between
maternal and paternal half-siblings, and none are assigned (although they may be identified with
GetMaybeRel(). In COLONY, candidate mothers and fathers can be specified, but this option is not
available in sequoia (yet?).

• When a relationship is uncertain, COLONY will include it in the output with a low confidence probability.
sequoia only makes assignments of which it is very sure, as the sequential nature of the algorithm may
otherwise result in a snowball effect of incorrect assignments.

You can get sequoia‘s ’opinion’ on a COLONY reconstructed pedigree (or any other pedigree) with
CalcOHLLR(), which for every assigned parent gives the log-likelihood ratio between being parent-offspring
with the focal individual, versus otherwise related. You may also use CalcPairLL() for a specific set of pairs
of individuals to calculate their likelihoods to be parent-offspring, full siblings, . . . , and investigate how
these likelihoods change when changing the ageprior or with Complex='simp'.

References
Huisman, Jisca. 2017. “Pedigree Reconstruction from SNP Data: Parentage Assignment, Sibship Clustering

and Beyond.” Molecular Ecology Resources 17 (5): 1009–24.
Marshall, T C, J B K E Slate, L E B Kruuk, and J M Pemberton. 1998. “Statistical Confidence for

Likelihood-Based Paternity Inference in Natural Populations.” Molecular Ecology 7 (5): 639–55.
Thompson, E A, and T R Meagher. 1987. “Parental and Sib Likelihoods in Genealogy Reconstruction.”

Biometrics, 585–600.

39

	Quick-start examples
	Simulated Data
	Real Data

	Background
	Key Points
	Mendelian Errors
	Likelihoods
	Genotyping errors
	Birth years & Ageprior
	Parent LLR
	Confidence
	Low assignment rate

	Function overview
	Input
	Simulate
	Ageprior
	Pedigree reconstruction
	Pedigree check
	Pairwise relationships
	Miscellaneous

	sequoia() input
	Genotypes
	Birth years & sex
	Tfilter & Tassign
	Complex
	Herm
	UseAge
	SeqList

	Running sequoia()
	Module (MaxSibIter)
	Input check
	Check for duplicates
	Parentage assignment
	AgePrior
	Full reconstruction
	Save output

	Output check
	Pedigree stats & plots
	Compare pedigrees
	Relatedness
	Cluster families

	Hermaphrodites
	Herm `A': Pedigree prior
	Herm `B': Ignore sex role
	Hermaphrodite dummies
	Assignment errors

	FAQ
	Error about/due to input data
	Low assignment rate
	Death year
	Accuracy
	Add new individuals
	Results differ from COLONY

	References

